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Bioconvection of gravitactic micro-organisms in rectangular enclosures
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Abstract

This paper investigates the gravitactic bioconvection in rectangular enclosures. The governing equations are the continuity, the
Navier–Stokes equations with the Boussinesq approximation and the diffusion equation for the motile micro-organisms. The control
volume method is used to solve numerically the complete set of governing equations. The effects of bioconvection Peclet number from
0.1 to 10 and the aspect ratio from 1 to 5 are investigated on the onset of bioconvection. It was found that the bifurcation was subcritical
in all cases. The critical Rayleigh number is decreased with increasing bioconvection Peclet number and with increasing aspect ratio.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Bioconvection is the spontaneous pattern formation in
suspensions of micro-organisms, which are little denser
than water and move randomly, but on average upwardly
against gravity. Up swimming of micro-organisms is gener-
ally a response to an external force field such as gravity
(gravitaxis or geotaxis), light source (phototaxis), biochem-
ical stimulus such as gradient of oxygen concentration
(chemotaxis) and torques due to gravity and shear (gyro-
taxis). Due to up swimming, the top layer of the suspension
becomes denser than the layer below, resulting in an unsta-
ble density distribution. This may lead to a convective
instability and formation of convection patterns similar
to the patterns observed in the Rayleigh–Bénard convec-
tion. Theoretical models of bioconvection for different
types of motile micro-organisms have been developed in
various recent publications, including Metcalfe and Pedley
[1], Hillesdon and Pedley [2] and Hill et al. [3]. For a review
of the fundamental work in this area, see Pedley and
Kessler [4] and Hill and Pedley [5].
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Rational continuum models for a suspension of purely
gravitactic micro-organisms have been formulated and
analyzed by Childress et al. [6]. The formulation includes
the Navier–Stokes equations with the Boussinesq approxi-
mation for an incompressible fluid and the micro-organ-
isms conservation equation. A numerical study based on
the equations derived by Childress et al. [6] was presented
by Fujita and Watanabe [7]. They discretized the equations
using finite difference method with a spatially staggered
grid. They found that the system of bioconvection can lead
into chaotic behavior via a sequence of bifurcations by
increasing the Rayleigh number. The preferred wave num-
ber of gravitactic bioconvection in a rectangular cavity was
studied by Harashima et al. [8] who carried out numerical
experiments to show that the system evolves in the direc-
tion of intensifying downward advection of micro-organ-
isms and reducing the total potential energy of the
system. Ghorai and Hill [9] studied gyrotactic bioconvec-
tion, using a vorticity-stream function formulation of the
basic model, which was first introduced by Pedley et al.
[10]. The development and instabilities of a single,
two-dimensional gyrotactic plume and a periodic array of
such plumes were examined in Ghorai and Hill [9,11]. They
investigated numerically the existence and stability of a
plume in a suspension of gyrotactic swimming micro-
organisms, Chlamydomonas nivalis, in a deep and narrow
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Nomenclature

A cavity aspect ratio, A = L/H
Dc cell diffusivity
g gravitational acceleration
H cavity height
~J dimensionless flux of micro-organisms
~k unit vector
L cavity width
n dimensionless cell concentration
�n average cell concentration
~n unit normal vector to the boundaries
p dimensionless pressure
Pe bioconvection Peclet number, Pe = HVc/Dc

Ra bioconvection Rayleigh number, Ra ¼
g#Dq�nH 3=qmDc

Sc Schmidt number, Sc = m/Dc

t dimensionless time
~u dimensionless fluid velocity
Vc gravitactic cell velocity
x, y dimensionless coordinate system

Greek symbols

a thermal diffusivity
l dynamic viscosity of the suspension
m kinematic viscosity of the suspension
qc cell density
qw water density
Dq difference between cell and water densities, Dq =

qc � qw

# cell volume
w dimensionless stream function
x dimensionless vorticity

Superscripts
0 dimensional variable
sub subcritical
sup supercritical

Fig. 1. Schematic diagram of the computational domain and boundary
conditions.
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chamber with stress-free side walls. Their governing
parameters were, in our notation, Sc = 20, Pe = 5–20,
A = 1–0.125, i.e., square to tall, narrow enclosures. They
carried out a parametric study to determine effects of gyro-
tactic number and cell swimming speed, and the instability
mechanism. They carried out also a linear stability analysis
at small gyrotactic numbers and found good agreement
between the numerical and the linear stability analysis
results [9]. Bees and Hill [12] carried out a study by weakly
non-linear theory and showed that in gyrotactic swimming
micro-organisms in a deep suspension, the bifurcation to
instability was supercritical. They found also that the linear
theory was adequate to predict the pattern formation, i.e.,
the first plumes to appear in initially a well mixed deep sus-
pension of gyrotactic micro-organisms.

The onset of bioconvection and the mechanism of bifur-
cation are studied by using linear stability theory, non-
linear theory and numerical methods (e.g., [4]). For
gravitaxis bioconvection, using weakly nonlinear theory
Childress and Spiegel [13] found that the bifurcation in bio-
convection of gravitactic micro-organisms in a horizontal
fluid layer was subcritical. Recently, Alloui et al. [14] stud-
ied numerically bioconvection and pattern formation of
gravitactic micro-organisms in a vertical cylinder, with
the aspect ratio of 1 and 0.1, i.e., square and tall enclosures.
They found that the pattern formation at low Peclet num-
bers was analogous to the Rayleigh–Bénard convection,
i.e., the bifurcation was supercritical, while at high Peclet
numbers it was subcritical. In contrast, it is found that pat-
tern formation in gyrotaxis bioconvection in tall enclosures
was through supercritical bifurcation [9,12].

We focus in this paper on gravitactic bioconvection
developed in a suspension of gravitactic micro-organisms,
like paramecium and tetrahymena, in square to shallow
enclosures. The governing parameters are Sc = 1,
Pe = 0.1–10 and A = 1–5. We will obtain numerical solu-
tions to the governing equations of the continuity, the full
Navier–Stokes and the cell concentration at critical condi-
tions for the onset of convection. Our aim is to investigate
the effects of the aspect ratio and Peclet number on the
onset and development of bioconvection.

2. Mathematical formulation

The system consists of a suspension of gravitactic micro-
organisms enclosed in a two-dimensional rectangular cav-
ity of width L and height H referred to Cartesian coordi-
nates (x0, y0) with the y0 axis pointing vertically upwards
(Fig. 1). Initially we have a uniform concentration distribu-
tion �n and each cell has a volume # and density qc. Assum-
ing that the suspension is incompressible and introducing
the stream function w0 and the vorticity x0, we get
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Fig. 2. Bifurcation diagrams for aspect ratio A = 1 and various biocon-
vection Peclet numbers. (a) Pe = 0.1; (b) Pe = 1 and (c) Pe = 10.
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~u0 ¼ ðow0=oy 0;�ow0=ox0Þ ð1Þ
x0 ¼ �r2w0 ð2Þ

The Boussinesq approximation assumes that all physical
properties are constant except for the density in the buoy-
ancy term, which may be expressed as a linear function of
cell concentration

q ¼ qw þ ðqc � qwÞn0# ¼ qw 1þ #Dq
qw

n0
� �

ð3Þ

where q is the density of the suspension, qw and qc the den-
sity of the fluid and of the cells, respectively.

The momentum equation under the Boussinesq approx-
imation leads to the vorticity equation

ox0

ot0
þ r � ðx0~u0Þ ¼ mr2x0 � g#

Dq
qw

on0

ox0
ð4Þ

Here, m is the kinematic viscosity of the suspension, which
is assumed to be that of the fluid.

The cell concentration can be described by the equation

on0

ot0
¼ �r �~J 0 ð5Þ

where the flux of the cells is

~J 0 ¼ ð~u0 þ V c
~kÞn0 � Dcrn0 ð6Þ

with n0 being the number of cells in a unit volume, Vc the
upward velocity,~k vertical unit vector and Dc the diffusion
coefficient of the cells.

We impose rigid, non-slip boundary conditions at the
top, bottom and side walls. Also there is no flux of cells
through the walls (Fig. 1). Hence

w0 ¼ 0;
ow0

ox0
¼ 0 and ~J 0 �~n ¼ 0 at x0 ¼ 0; L ð7Þ

w0 ¼ 0;
ow0

oy0
¼ 0 and ~J 0 �~n ¼ 0 at y0 ¼ 0;H ð8Þ

where ~n is the unit vector normal to the boundary.
Length is scaled on the height H, time on the diffusive

scale H2/Dc, velocity on Dc/H, and the concentration on
the mean concentration �n. The resulting system of coupled
equations is

x ¼ �r2w ð9Þ
ox
ot
þr � ðx~uÞ ¼ Scr2x� ScRa

on
ox

ð10Þ

on
ot
¼ �r �~J ð11Þ

where the flux of the cells is

~J ¼ ð~uþ Pe~kÞn�rn ð12Þ
Here, Sc = m/Dc is the Schmidt number, Pe = VcH/Dc the
bioconvection Peclet number and Ra ¼ g#�nDqH 3=qmDc

the bioconvection Rayleigh number.
Eqs. (9)–(11) are subjected to the boundary conditions

w ¼ 0; ow
ox ¼ 0 and � on

ox ¼ 0 at x ¼ 0;A

w ¼ 0; ow
oy ¼ 0 and nPe� on

oy ¼ 0 at y ¼ 0; 1

(
ð13Þ

where A = L/H is the aspect ratio of the cavity.
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3. Numerical procedure

The control volume method of Patankar [15] is used to
discretize governing Eqs. (9)–(12) with a uniform staggered
grid with the stream function stored on one set of nodes
and the vorticity and concentration stored on another set
of nodes. The discretized equations are derived using the
central differences for spatial derivatives and backward dif-
ferences for time derivatives. A line-by-line tridiagonal
matrix algorithm with relaxation is used in conjunction
with iteration to solve the nonlinear discretized equations.

The validation of the code was done earlier [14], which is
summarized here. Eqs. (9)–(11) with Eq. (13) possess a
Fig. 3. Streamlines and isoconcentrations for A = 1 of Fig. 2. (a) Pe =
steady-state solution with w = x = 0, which is solved ana-
lytically and the results are compared to those obtained
numerically using the present code. The agreement found
was excellent for Pe = 1 and 10. Additionally, by using
the present code, we simulated the Rayleigh–Bénard con-
vection in a horizontal fluid layer heated from below by
constant temperature and produced bifurcation diagram.
We determined the critical Rayleigh number as 1708, con-
sistent with the literature [16].

Uniform grid in x and y direction were used for all com-
putations. Grid convergence was studied for the case of
A = 1 and Pe = 10 with grid sizes from 11 � 11 to
151 � 151. Grid independence was achieved with grid size
0.1, Ra = 17000; (b) Pe = 1, Ra = 1780 and (c) Pe = 10, Ra = 780.
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Fig. 4. Bifurcation diagrams for aspect ratio A = 2 and various biocon-
vection Peclet numbers. (a) Pe = 0.1, (b) Pe = 1 and (c) Pe = 10.
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of 51 � 51 within 0.1% in extremum stream function with
reference to that of 151 � 151. Similar tests were done with
the cavities having A = 2 and 5, and found that the grid size
was satisfactory with the following grids: 51 � 101 for
A = 2 and 51 � 251 for A = 5. The time step Dt was 0.02.

We consider that the convergence is reached when

jf kþ1
i;j � f k

i;jj
max jf k

i;jj
6 e ð14Þ

where f corresponds to the variables (x, w, n) and e is the
prescribed tolerance, k is the iteration number, and i, j de-
note the grid points. The results were obtained with
e = 10�6 and k = t/Dt was variable depending on the con-
vergence time t.

4. Results and discussion

Computations are performed for the following values of
dimensionless parameters: Aspect ratio of A = 1, 2 and 5,
the bioconvection Peclet number, Pe = 0.1, 1 and 10, the
Schmidt number Sc = 1 and the Rayleigh number variable.
Pe and Sc numbers correspond to bioconvection cases with
typical micro-organisms (e.g., [17,18]): the diffusion coeffi-
cient Dc = 5 � 10�3–0.5 � 10�2 cm2/s, the cell velocity
Vc = 7.5 � 10�3–1 � 10�2 m/s, the cell density qc =
(1.035–1.10)q, the cell volume h = 1 � 10�12–5 � 10�10 cm3,
the cell concentration = 8.44 � 105–1 � 109 cell/cm3. For
example, for paramecium caudatum used in [17],
Dc = 5 � 10�3–4.5 � 10�2 cm2/s, Vc = 3.2 � 10�2–7.7 �
10�2 cm/s, H = 0.1 cm; we obtain Sc = 0.22–2 and
Pe = 0.07–1.54.

The procedure of determining the critical Rayleigh num-
ber and bifurcation was: we begin the simulation with the
diffusion state as initial condition, gradually increasing
the Rayleigh number until convection arises. Rayleigh at
which the convection begins corresponds to the supercriti-
cal Rayleigh number. We continue to obtain solutions at
higher Rayleigh numbers with the solution at the previous,
lower Rayleigh number as initial condition. Once the solu-
tion at the highest Rayleigh number is obtained, we pro-
ceed backward to obtain solutions at lower Rayleigh
numbers using the solution at the previous, higher Ray-
leigh number as initial condition. As Ra is decreased, we
continue to obtain solutions until the convection disap-
pears suddenly at a certain value, which corresponds to
the subcritical Rayleigh number. Thus, it is found that
the bioconvection arises, as the Rayleigh number Ra is
increased at a certain supercritical value, Rasup, and disap-
pears suddenly as Ra is decreased at a certain subcritical

value, Rasub. It is Rasub < Rasup. This behaviour is typical
of a subcritical bifurcation. It has also been observed
experimentally by Mogami et al. [18], who analyzed the
temporal and spatial changes in bioconvection pattern with
varying gravity. They found a lower threshold, i.e., a lower
critical Rayleigh number, for decreasing gravity than for
increasing gravity.
We present the results of case with A = 1 and Pe = 0.1, 1
and 10 in Fig. 2. For Pe = 0.1 in Fig. 2a, we obtain
Rasub

c ¼ 16; 800 and Rasup
c ¼ 20; 200. Thus, the gravitactic

convection is subcritical. This was not the case in cylindri-
cal enclosure in which it was supercritical [14]. For Pe = 1
shown in Fig. 2b, it appears that the gravitactic convection
is subcritical at Rasub

c ¼ 1730 and its value is reduced
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considerably by increasing Pe number from 0.1 to 1. We
have a supercritical Rasup

c ¼ 1770 from the diffusive state.
The solution is unstable as shown in Fig. 2b. When we fur-
ther increase Pe number to 10, we see in Fig. 2c that a sim-
ilar situation is obtained as for Pe = 1, i.e., we have a
subcritical bifurcation and Rasub

c is further decreased with
increasing bioconvection Pe number. The convection sets
in at a supercritical Rayleigh number of Rasup

c ¼ 800, which
is obtained from the diffusive state.

We present in Fig. 3 streamlines and isoconcentration at
Rayleigh numbers slightly above the critical Rayleigh num-
ber for each case of Fig. 2, i.e., for Pe = 0.1, Ra = 17,000,
Pe = 1, Ra = 1780 and Pe = 10, Ra = 780. We see the
strong influence of Peclet number on the concentration
field: for Pe = 0.1, the micro-organism concentration is
uniform in the enclosure, for Pe = 1, it is similar to that
of Pe = 0.1 with some accumulation on the top, and as
Peclet is further increased to 10, the micro-organisms are
accumulated on the top. The flow patterns show that the
fluid flow covers almost all the enclosure regardless of Pec-
let number.

The results of the case with A = 2 and Pe = 0.1, 1, 10 are
shown in Fig. 4. We see that the gravitactic convection is
subcritical with all three Pe numbers. For Pe = 0.1 in
Fig. 4a, Rasub

c ¼ 8400, which is smaller than the critical
Rayleigh obtained for A = 1 for the same Pe number.
For Pe = 1 shown in Fig. 4b, Rasub

c ¼ 870 and for
Pe = 10 shown in Fig. 4c, Rasub

c ¼ 455. Also in all these
cases the critical Rayleigh number is lower than those for
Fig. 5. Isolines for A = 2 and Pe = 10 of bifurcation diagram in Fig. 4c at v
Streamlines are shown on the left and isoconcentration on the right.
the case with A = 1. We note that for Pe = 10, when the
results obtained from the convective state, we have two
convection cells from Ra = 2000 down to 650 at which
the flow field changes to one cell. Similarly, in the case of
the result obtained from the diffusion state, the supercriti-
cal Rayleigh number is 930 at which we get directly a flow
field with two convection cells.

We present in Fig. 5 the flow and concentration fields at
Ra = 2000, 650 and 600. At Ra = 2000 in Fig. 5a, the flow
field is with two cells, the right one is counterclockwise and
the left clockwise rotating, as a result, the fluid sinks at the
center of the enclosure. The micro-organisms are concen-
trated at the top center. At Ra = 650 shown in Fig. 5b,
the flow field is similar to the one in Fig. 5a, however, with
reduced circulation strength. As a result, we have a similar
isoconcentration pattern. At Ra = 600 in Fig. 5c, we have a
single counterclockwise circulating cell at the left upper cor-
ner and the micro-organisms form a layer at that corner.

We present the shallow enclosure case, A = 5 with Pe

from 0.1 to 10 in Fig. 6. For Pe = 0.1 in Fig. 6a we have
a subcritical bifurcation at Rasub

c ¼ 6990. The gravitactic
convection obtained from the convection state is with the
flow field having four cells from Ra � 50 � 103 down to
13,000, then the flow field becomes with two convection
cells, Ra from 12,000 down to 6990. By continuing at lower
Ra numbers, the convection disappears suddenly at 6990.
Starting with diffusive state, we obtain the supercritical
Rayleigh number, Rasup

c ¼ 9600, slightly above which, the
gravitactic convection begins with two convection cells.
arious Rayleigh numbers. (a) Ra = 600, (b) Ra = 650 and (c) Ra = 2000.
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Fig. 6. Bifurcation diagrams for aspect ratio A = 5 and various biocon-
vection Peclet numbers. (a) Pe = 0.1; (b) Pe = 1 and (c) Pe = 10.
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For Pe = 1 shown in Fig. 6b, we have a subcritical bifur-
cation. The gravitactic convection obtained from the con-
vection state is with four cells. By continuing at lower
Rayleigh numbers, the flow with three cells is obtained at
Rayleigh about 1200 down to 950. Then, the flow becomes
with two cells at Ra = 905. By continuing still at lower Ra
numbers, the two cells convection becomes one cell convec-
tion at Ra = 870. Then, the convection disappears at Ray-
leigh number, Rasub

c ¼ 775. Starting from the diffusive state,
we have a supercritical Rayleigh number at Rasup

c ¼ 1450,
above which we obtain convection with three convection
cells, yet at the same Rayleigh number, we obtained four
convection cells in case of starting from the convection
state. As discussed before, this is due to unstable convective
flow.

To see these different states, we plotted streamlines and
isoconcentration, and presented in Fig. 7 to illustrate the
flow and concentration fields thus obtained corresponding
to various states observed in Fig. 6b. For Ra = 2000 shown
in Fig. 7a, we see four convection cells and the concentra-
tion varies in a way corresponding to the cells formed. The
right cell is clockwise, the next two cells in the central part
are counterclockwise and clockwise circulating and the last
cell at the left is counterclockwise circulating. Thus, the
micro-organisms are concentrated on the top at the left
and right corners and at the center above the two convec-
tion cells in the center. For Ra = 1200 in Fig. 7b, we have
three convection cells formed. The right cell is clockwise
circulating as a result of which the micro-organisms are
concentrated on the top at the right corner. As the left cell
circulating clockwise and the center one counterclockwise,
they are concentrated on top of the two left cells. At
Ra = 900 in Fig. 7c, we see the micro-organisms are con-
centrated at the top corners corresponding to clockwise cir-
culating right cell and counterclockwise circulating left cell.
At Ra = 780 in Fig. 7d we have a flow with single clockwise
circulating convection cell squeezed to the right, the micro-
organisms are concentrated at the top right corner.

As Pe increased to 10, shown in Fig. 6c, the bifurcation
is subcritical at Rasub

c ¼ 250. The solution obtained from
the convection state is with six cells. By continuing at lower
Rayleigh numbers, the flow with four cells is obtained at
Rayleigh about 1150 down to 920, and then with two cells
at 900 down to 505. At still lower Ra numbers, the convec-
tion becomes single cell at 450 and it disappears at
Rasub

c ¼ 250. Starting from the diffusive state, the bifurca-
tion is supercritical at Rasup

c ¼ 920, above which we obtain
convection with four cells. The influence of Peclet number
at various Rayleigh numbers in this case is shown in Fig. 8.
At Ra = 1500 in Fig. 8a, the flow field is with six cells and
the isoconcentration follows the pattern of each pair of
convection cells: the micro-organisms are accumulated at
the top location corresponding to the sinking fluid of each
pair. At Ra = 1000 in Fig. 8b, the flow field is with four
cells. The right and left cells rotate clockwise and counter-
clockwise, respectively, and as a result, the micro-organ-
isms are accumulated at the left and right corners at the
top. At the center, the fluid sinks at the center by the coun-
terclockwise and clockwise rotating pair of cells and we see
the micro-organisms are accumulated at the top center. At
Ra = 700 in Fig. 8c, there are two convection cells, the
right one clockwise and the left one counterclockwise rotat-
ing. The micro-organisms are accumulated at the top
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corners. At Ra = 300 in Fig. 8d, just above Rasub
c , the flow

field becomes with a clockwise rotating single cell and the
whole micro-organisms are accumulated at the right
corner.

For Pe = 1 and 10 in Fig. 6b and c, the convective flow
in the region between Rasup

c and Rasub
c is unstable where,

depending on the Rayleigh number, different convection
patterns are formed. In fact, we see in Fig. 6b and c and
the corresponding patterns in Fig. 8 that the number of
convection cells formed changes from 4 to 2 and from 2
to 1 before reaching the sub-critical Rayleigh number.

To see the mechanism of pattern change near super crit-
ical Rayleigh number of Fig. 6c, we present the time
sequence diagrams at Ra = 1000, 900 and 800 in Fig. 9. Fol-
lowing the procedure explained earlier, we obtained the
solution at Ra = 1000 by using the solution from the previ-
Fig. 7. Isolines for A = 5 and Pe = 1 of bifurcation diagram in Fig. 6b at vario
Ra = 780. Streamlines are shown on the left and isoconcentration on the righ

Fig. 8. Streamline and isoconcentration patterns at various Rayleigh numbers
and (d) Ra = 300.
ous solution at Ra = 1050 from which we get (t = 0.02,
wext = 5.634). We see in Fig. 9a that after a relatively short
computation time (t = 0.75, wext = 5.542), the solution
becomes quasi steady-state, a typical time sequence. After
satisfying the convergence criteria Eq. (14), we obtain
(t = 12.26, wext = 5.5424, Ra = 1000), which is on the bifur-
cation curve with four convection cells. To obtain solution
at Ra ¼ 900 < Rasup

c ¼ 920, we follow the same procedure
and use the solution at Ra = 1000. The time sequence dia-
gram is shown in Fig. 9b; in a very short computation time
at (t = 0.02, wext = 5.3202), wext increases steadily from
(t = 0.30, wext = 5.0108) to (t = 762, wext = 5.6219), and
then it increases suddenly to (t = 768, wext = 6.6725) and
finally a converged solution is obtained at (t = 833,
wext = 6.6935, Ra = 900), at which we have a pattern of
two convection cells. The next computation at lower
us Rayleigh numbers. (a) Ra = 2000; (b) Ra = 1200; (c) Ra = 900 and (d)
t.

of Fig. 6c for A = 5, Pe = 10. (a) Ra = 1500; (b) Ra = 1000; (c) Ra = 700



Fig. 9. Time sequence diagrams corresponding to the case with A = 5,
Pe = 10 of Fig. 6c at (a) Ra = 1000; (b) Ra = 900 and (c) Ra = 800.
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Ra = 800 is done similarly by reading the solution from
Ra = 900, the time sequence diagram of which is shown in
Fig. 9c. We observe that the time sequence is once more a
typical one, like in Fig. 9a, and the solution is (t = 12.54,
wext = 6.1363, Ra = 800) with two convection cells. We note
that the mechanism of pattern formation observed here is
quite different from that of gyrotactic bioconvection in nar-
row and tall enclosures [9].

5. Conclusion

Numerical simulations of gravitactic bioconvection in
rectangular enclosures were carried out. The vertical walls
of the cavity are assumed to be stress-free and insulated,
while horizontal boundaries are rigid. The governing equa-
tions are integrated numerically using the control volume
method. The present results exhibit the influence of biocon-
vection Peclet number and aspect ratio on the bifurcation
diagram and the flow structure. We have found that the
bifurcation remains subcritical in all cases when the bio-
convection Pe number is varied from 0.1 to 10 in rectangu-
lar enclosures having an aspect ratio from 1 to 5.
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